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Definitions

The purpose of a definition is to associate a word with a concept.
Often, for conciseness, a theorem will use the terminology rather
than describing the concept.
To prove the theorem, we must apply the definitions of the terms.
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Definitions

Theorem
If a function f is differentiable at x = c, then f is continuous at x = c.

The statement uses the terms function, differentiable, and
continuous.
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Definitions

Definition (Continuous)
A function f is continuous at x = c if

lim
x→c

f (x) = f (c).

Definition (Differentiable)
A function f is differentiable at x = c if

lim
x→c

f (x)− f (c)
x − c

exists.
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Even and Odd Integers

Definition (Even Integer)
An integer n is even if there exists an integer k such that n = 2k .

Definition (Odd Integer)
An integer n is odd if there exists an integer k such that n = 2k + 1.

Definition (Multiple)
An integer a is a multiple of an integer b if there exists an integer c
such that a = bc.
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Even and Odd Integers

Theorem
The sum of any two consecutive odd integers is a multiple of 4.

Proof.

Let n be an odd integer.

Then n = 2k + 1 for some integer k .

The next odd integer is n + 2, so n + 2 = 2k + 3.
Then the sum of the consecutive odd integers is

n + (n + 2)

= (2k + 1) + (2k + 3)
= 4k + 4
= 4(k + 1)

which is a multiple of 4.
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Even and Odd Integers

Theorem
The sum of any two consecutive even integers is not a multiple of 4.

Proof.
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Even and Odd Integers

Theorem
The product of three consecutive integers is a multiple of 6, but it is not
necessarily a multiple of 12.

Proof.
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LATEX Modes

LATEX is a mathematical typesetting system.
This slideshow was written in LATEX.
There are two modes: text and math.
The dollar sign ($) is used to toggle between the modes.
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The LATEX File

A LATEX file uses the .tex extension.
The first line is

\documentclass[12pt]{article}

This is followed by a preamble, which we will discuss later.
The body of the document is placed between the delimiters

\begin{document}
:

\end{document}
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Mathematical Expressions

The basic operators.
Addition: +
Subtraction: -
Multiplication: \cdot(·) or \times (×)
Exponentiation: ˆ{exp}
Division: / or \div(÷) or \frac{num}{den}

Extendible grouping symbols.
Parentheses: \left(...\right)
Square brackets: \left[...\right]
Curly braces: \left\{...\right\}
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Mathematical Expressions

Example (Mathematical Expressions)
The LATEX expression

\left(\frac{2x-1}{x+1}\right)ˆ{n+1}

is rendered as (
2x − 1
x + 1

)n+1
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Mathematical Expressions

Example (Mathematical Expressions)
The LATEX expression

(n+1)ˆ{\frac{2x-1}{x+1}}

is rendered as
(n + 1)

2x−1
x+1
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Typefaces

Example (Typefaces)
The standard typefaces, in text mode.

Boldface: \textbf{...}
Italicized: \textit{...}

The standard typefaces, in math mode.
Boldface: \mathbf{...}
Not italicized: \text{...}
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The align Environment

To display a series of equations, all aligned with the equal sign (or
any symbol of your choice), use the align environment.
The alignment character is the ampersand &.
Use \\ to start a new line.
An environment is delimited by \begin{env-name} and
\end{env-name}.
LATEX provides many kinds of environments.
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The align Environment

For example,
\begin{align*}
y &= (x+1)ˆ2-1 \\
&= (xˆ2+2x+1)-1 \\
&= xˆ2+2x \\
&= x(x+2).
\end{align*}

will be rendered as

y = (x + 1)2 − 1

= (x2 + 2x + 1)− 1

= x2 + 2x
= x(x + 2).
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The align Environment

The * means “do not number the equations.”
If we leave it off, then we get

y = (x + 1)2 − 1 (1)

= (x2 + 2x + 1)− 1 (2)

= x2 + 2x (3)
= x(x + 2). (4)
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Integers, Real Numbers, Etc.

The whole numbers are 1,2,3, . . ..
The integers are the whole numbers, their negatives, and zero:

{. . . ,−3,−2,−1,0,1,2,3, . . .}

The rational numbers are the fractions of integers:{a
b

∣∣∣a,b are integers,b 6= 0
}
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Integers, Real Numbers, Etc.

The real numbers are rational numbers together with the irrational
numbers.

The real numbers are all numbers that can be expressed in
terminating or nonterminating decimal form.

The complex numbers are the numbers of the form a + bi , where
a and b are real numbers and i2 = −1.
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Standard Symbols

The standard symbols are
N = the whole numbers.
Z = the integers.
Q = the rational numbers.
R = the real numbers.
C = the complex numbers.

Use \mathbb{} to create that type face.
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Assignment

Homework
Presentation – Chapter 1:
Written – Chapter 1:
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